
Stata 12 basics 1 FJR March 2014

STATA Basics

This guide assumes some familiarity with concepts such as missing values, variables,

observations, and datasets, and with simple statistical analysis.

1. The interface

1.1 The windows

When STATA is started five windows appear on the screen:

 The main window is the output window or results window, labelled Stata Results.

This is where the effects of all operations are displayed.

 Below the results window is the command window. A command typed in here is

executed immediately and the effects appear in the results window.

 To the left of the results window is the review window. This lists all the commands

entered in the command window.

 To the right of the results window is the variable list window. This lists all the

variables available in the dataset.

 Finally, the bottom right-hand window (the variable description window) shows

more detailed information about any variable you have selected in the variable list

window.

These windows can be resized by hovering over the edges of the windows until the arrow

cursor turns into a double arrow, and then “pulling” the edge to the right size. Stata will

remember these settings.

Command window

Output window

Variable
list

window

Review
window

Variable
description

window

Stata 12 basics 2 FJR March 2014

1.2 Using the windows

Load up one of the sample data files. From the top menus choose

file => open => auto.dta

where auto.dta is a Stata sample file found in the directory where Stata is installed.

Assuming Stata has been installed in C:\Program Files\Stata, the command

use “C:\Program Files\stata\auto.dta” , clear

has appeared in the results window along with a description of the file found (“1978

automobile data”).

The command has also been placed in the review window. To run this command again,

double-click on it; or use the “page-up” and “page-down” keys to move through the

command list.

To enter a command, type in

summarize

and press the “return” key (). This gives a summary of the characteristics of the data sets.

All of the Stata commands can be abbreviated, as long as those are not ambiguous. For

example:

summarize

summa

sum

su

s

The first four are okay, but the last one could be any command beginning with “s”.

To see the data for just a few variables, (for example, make and price) enter

summarize make price

Instead of typing in the variables names, click on the names in the variable windows. This

will insert them into the command window.

Enter

list make price

Note that the display stops when it has a screen full. To continue displaying, press the space

bar. To abandon the display, press “q” (for quit).

Although Stata displays one screen at a time, it keeps a record of previous outputs. Using the

scroll bar on the right of the results window, it can be seen that earlier results are still

visible. However, this is not an infinite record. Run the list command several times, then

note how the results window drops the oldest output.

Stata 12 basics 3 FJR March 2014

1.3 Logging results

The results window is dynamic and cannot be saved. To keep a permanent copy of results a

log file needs to be created.

To create a log file, click on the log button or use the command

file => log => begin

This will open a dialogue box to find a log file. Note that Stata creates files with an “SMCL”

extension. This is Stata’s format for displaying log files, and it is not easily usable outside

Stata.

When the file “test.smcl” (for example) is created, Stata records the command

log using “C:\stata\data\test.smcl”

as having been executed. This command could have been typed in as well as being a menu

function. In Stata, almost all the menu commands have an equivalent that could be typed in.

This becomes increasingly relevant as programs rather than interactive commands are used.

To close the log, enter

log close

Again, this could have been done from the menu. To review the log, on the menus choose

file => log => view…

and select the name of the log file. Unlike the results window, log files are not limited in size,

and they will record all the output while the log file is open.

1.4 Amending the environment

To change the environment, the set command is used. This sets system parameters. One

particularly useful command is:

set more off

This controls whether Stata stops at the end of each screen full of output and waits for a key

to be pressed. If “more” is switched off, then Stata just displays results without waiting for

user input.

Stata will not let certain things happen when it has a (changed) dataset loaded – for

example, loading another dataset, or changing the amount of memory. To clear Stata, enter

clear

which removes all data from memory.

1.5 The working directory

Stata uses the concept of a “working directory” where files without a full path name are

read from and stored. The current working directory can be seen on the bottom left-hand

corner of the screen, or by entering

Stata 12 basics 4 FJR March 2014

cd

which stands for “change directory”. To change to a particular directory, place the path after

the cd:

cd “data”

cd “c:\stata\data”

The former moves to a directory “data” which is a subdirectory of the current working

directory (that is, it is a relative path). The latter moves to the directory C:\Stata\Data

irrespective of current location (in other words, it is an absolute path). The quote marks are

not necessary unless there are spaces or other odd characters in the directory name, but

they make the code more readable.

1.6 The help system

The Stata help system has three main paths to find information. Each is accessed by clicking

on the “help” button. In addition, typing one of these

help item

search item

will display help on the item in the results window. However, this is rather less helpful than

the pop-up windows which arise from using the menu command.

1.6.1 Help directory

This is largely a copy of the user guide, with help organised by functionality. This is the best

place to explore the possibilities of Stata.

help => contents

1.6.2 Help search

This option allows a free-text word search through all the Stata help files, and will return all

the help pages containing the search term. This sometimes seems to miss terms, and Stata is

not good with synonyms, so if a term is not found it’s usually worth trying to find an

alternative description.

help => search…

This is the best way to find information if a particular concept or tool is required.

1.6.3 Help on a specific command

This is the easiest route for finding information on a command or its parameters – if that

command is known. To use it choose

help => Stata command…

Note however that the command help does not recognise abbreviations (eg “sum” for

“summarize”).

Stata 12 basics 5 FJR March 2014

1.7 Leaving Stata

To leave Stata type in

exit

or close the Stata window. If the data has been edited, Stata will prompt before exiting.

Section 1 Exercises

E1.1 Load up one of the sample data files.

E1.2 Experiment with list, summarize and using the variable window to add variables to

commands.

E1.3 Use both the keys and the review window to rerun earlier commands

E1.4 Open a log file. Close and re-open it. Note the options that are available for

appending and suspending.

E1.5 On the “file” menu, look for the command to view saved log files. Try the “append”

and “suspend” options and view the results.

E1.6 Use the help system to

a. display text and do calculations interactively (use the “contents” option)

b. look for analysis of covariance operations (use the “search” open)

c. see what the options are for the estimation command est (use the “Stata

command” option

Stata 12 basics 6 FJR March 2014

2. The essential commands

For this section , use the cd command to change to the tutorial directory (which will be

given out in class; for argument here, use C:\temp\tutorial):

cd “c:\temp\tutorial”

This should contain a copy of the sample .dta files found in the Stata home directory. If not,

copy them over.

2.1 The command structure, and some warnings

Stata commands have the form

by …: command command

parameters

if … range … , command

options

selection

criteria

 Select only some

observations

selection criteria for

‘if’

The command is necessary but everything else can be optional. The selection criteria are

dealt with in the next section.

Some words of warning:

 Stata is not very consistent in the syntax of its commands. Moreover, some

commands are extended with the syntax and options of other commands. There is

no alternative but to learn the commands. Thinking in terms of the above blocks

may help to clarify the command structure

 Stata is case-sensitive

 Stata allows abbreviations of commands, variables, and options where these are

unambiguous. Hence, su, sum, summar are all valid abbreviations for “summarize”

but s (ambiguous) and summary (not an abbreviation) are not.

 The help system does not consistently recognise abbreviations

 Stata error messages are not the most enlightening.

Taken together, these mean there is a lot of scope for problems, particularly in the syntax of

commands. The good news is that these are relatively easy to identify.

2.2 Loading data

To open a data file, either use the menus

file => open…

or type in

use “filename” , clear

The clear option tells Stata to clear anything else out of memory. The quote marks are

optional unless you have unusual characters in the file name like spaces, but they make the

code more readable.

Stata 12 basics 7 FJR March 2014

Stata datasets have the extension .dta. This does not need to be specified as Stata assumes

it.

Stata only works on one dataset at a time. Therefore to work with more than one dataset it

is necessary to merge or append them. To append

append using “filename”

This appends a file on disk to the one currently in memory. If there are variables in one file

that don’t exist in the other then the variables will be filled in with missing values. For

example, observe the changes in the variable window when running the following code

use “auto”

count

append using “machine”

Now run

count

sum

count gives the number of observations in the file and sum is short for summarize. The first

shows that there are 131 observations in the combined files. The second shows that there

are 74 non-missing values for the variables which originate from the “auto” file and 57 non-

missing values for variables which appeared in “machine” (how do we know that the variable

‘rep78’ has 5 missing values?). The two datasets have formed two non-intersecting sets with

131 observations. append will always give the new number of observations as the sum of

the observations in each of the two source datasets.

merge works in a similar fashion except that at least one variable is specified as a key field. If

the key field is the same in both files, than that observation takes the variables from both

files; otherwise a new observation is created. If however, there are several variables (which

are not key fields) which have the same name, then the action that Stata takes depends

upon the options set.

merge is a complex command and is not necessary for this course. However the exercises at

the end of the section illustrate some of the issues.

2.3 Describing data

For this section load the files on Census housing figures:

use “hsng” , clear

The key descriptive commands are:

describe

summarize

tabulate

count

Stata 12 basics 8 FJR March 2014

which can be shortened sensibly to

desc

sum

tab

describe gives general information about the dataset including number of observations and

variables, dataset size, and details about the variables. It also notes whether the dataset is

sorted or not.

In the hsng dataset, note the “storage type” column of describe reports that “division” and

“region” are both integer variables (int). However, when working with these variables, they

will usually be displayed with helpful names such as “NE” or “SW” rather than “region 1” or

“region 2”. The way this is done is to associate a label with each integer value; Stata uses

this whenever it makes sense to display this rather than the integer value. This information

can be seen in the “value label” column. This course does not go into creating labels, but

remember that these two fields are integers, not text fields – they only display as text.

To see how this works, look at the results fo these commands

tab division

tab division , nolabel

By default, Stata will use helpful labels. The second command tells Stata that we want to see

the underlying coding.

summarize gives information about the characteristics of variables, including the range of

values encountered. The column obs shows the number of non-missing values. Note

however that text values show up as missing values. This is because Stata uses a special

value to indicate missing values which looks like a piece of text, not a number. As it’s

meaningless to talk about the median value for the name of a state, the sum command

ignores text variables.

Both of these commands cane be augmented by variable names:

desc state pop

sum division region

tabulate can create one- or two-way tabulations of data. Try:

tab region

tab division region

It only works where the variables can be broken down into a small enough categories. A one-

way tabulation allows for a greater range of values. Large values are allowed on some-two-

way tabulations, depending upon how the data is displayed. Look at the effect of:

tab pop region

tab region pop

count simply sums up all the observations, including missing values.

Stata 12 basics 9 FJR March 2014

2.4 Displaying variables

To examine the values of variables, use list:

list state pop

list on its own displays all variables for all observations, but the display format depends on

how variables can be fitted into a window.

For more leisurely viewing, use the browse option

browse

which allows all variables to be examined in a table. Specific variables can be examined by

adding variable names:

browse state region division pop popgrow

Note that some commands cannot be entered while the browse window is open.

For the value label fields “division” and “region”, browse displays the text label. However,

the underlying value is reported at the top of the screen. This is one way to identify the

values underlying the displayed text, which will become important later.

2.5 Creating variables

The command generate can be used to create new variables:

generate rent_value_ratio = rent/hsngval

The usual arithmetic operations can be carried out. If the variable already exists, an error

message will be sent.

A related command, replace, can be used to change existing variables:

replace rent_value_ratio = rent_value_ratio*12*100

For reasons best known to Stata, there is an “extension to generate” egen which has a wider

range of functions not available in generate:

egen tot_pop = sum(pop)

generate pop_prop = pop/tot_pop

When using generate to create variables which are not floating-point numbers (that is,

standard decimals), the variable type needs to be specified:

gen int pop_pp = pop_prop*100

gen str2 state_2l = substr(state, 1, 2)

The first creates an integer; the second, a string (a text field) two characters long from

characters 1-2 of the “state” variable.

Stata has certain system variables which contain information about the data. Two of the

most useful (although not in a whole-dataset context) are

_N The total number of observations

Stata 12 basics 10 FJR March 2014

_n The number of the current observation, as the dataset is currently sorted

To see the effect, try

gen big_N = _N

gen small_N = _n

list state big_N small_N

They can be used to index variables:

gen prev_pop = pop[_n-1]

list pop prev_pop

These become more important later when dealing with subsets of the dataset. Other system

variables include standard errors and coefficients generated by regressions.

2.6 Deleting variables

Variables can be removed by using the drop command:

drop state_2l

will remove the variable permanently. Several variables can be removed at once.

Alternatively, Stata can be instructed to keep only certain variables:

keep region division pop popden

will drop all variables apart from the ones listed.

2.7 Sorting data

Sorting date is straightforward using sort. Datasets can be sorted on any number of

variables.

sort region

sort pop

sort region pop

Once a dataset is sorted it remains in that order until Stata receives another sort command.

The sort order is also remembered if the dataset is saved.

2.8 Saving data

To save a file, use the command save:

save filename

save filename , replace

If a file with that file name already exists than the first command fails. The latter will

overwrite the file but will not ask before doing so. Which of these options is more

appropriate depends upon the particular circumstances.

Stata 12 basics 11 FJR March 2014

Section 2 Exercises

E2.1. Load up the file auto.dta. Use sum, describe, browse and list to familiarize yourself

with the data.

E2.2. Use generate to create a dummy variable from the “foreign” variable. Create it as an

“integer” data type

E2.3. Drop the original foreign variable

E2.4. Rename your new variable as “foreign”. Use the rename command (see the Help

system)

E2.5. Use generate and egen to create a new variable reflecting the average price of a car

Stata 12 basics 12 FJR March 2014

3. Using data samples

Reload the datafile “hsng” for this section, remembering to use the “clear” option.

3.1 “If” clauses

Almost any command can have an if-clause attached to it. This is used to work on

subsamples:

list state pop if pop<1000000

For equality tests, a double-equals sign is necessary:

gen small_state = pop<1000000

list state pop if small_state==1

“True” is recorded as a 1 and “False” as 0. The actual comparison could be omitted in the

above example:

list state pop if small_state

If-clauses can also include many of the functions available for generate as long as they apply

to individual entries:

list state pop if substr(state, 1, 2) == “Al”

which selects all the states beginning with the two-letter combination “Al”.

In combination with drop and keep, the if-clause can be used to drop observations, not just

variables:

drop if small_state

keep if rent>200

Stata also has logical operators allowing combinations of statements to be used

list state pop region if region == 1 & pop > 1000000

list state pop region if region == 1 | region == 2

Note how the comparison with “region” must be made in terms of the underlying integer

value, not the displayed text label.

3.2 Creating temporary subsets using “by”

Prefixing commands with by … : allows Stata to act as if it were operating on a series of

temporary subsamples. It is the creation of these which really make the generate and egen

commands powerful:

sort region

by region: egen reg_pop = sum(pop)

This creates a variable called reg_pop which contains the total population for each region.

by requires that the dataset be sorted. If not, it can be sorted in the same command:

Stata 12 basics 13 FJR March 2014

by region, sort: egen reg_pop2 = sum(pop)

and some (but not all) commands allow by as an additional option which does not sort the

dataset:

egen reg_pop3 = sum(pop), by(region)

by comes into its own when combined with the Stata system variables. Compare the

command in section 2.5 with these:

by region: gen r_big_N = _N

by region: gen r_small_N = _n

list region state r_big_N r_small_N

by region: list state r_big_N r_small_N

3.3 Missing values

Stata uses a special code for missing values. In the user interface, this is represented by a

dot, and it can be used in expressions:

generate log_pop_growth = ln(popgrow)

replace log_pop_growth = -99 if log_pop_growth ==.

In combination with generate and replace this can be a way to create categorical variables:

generate expand = 1 if popgrow>0

replace expand = -1 if popgrow<0

replace expand = 0 if expand ==.

Section 3 Exercises

For this exercise, load the file auto.dta.

E3.1. List the models of cars which have an MPG over 30

E3.2. Use generate to create a new variable from “make” which contains the car

manufacturer, not the model (hints: you want a new string variable which takes the

text in ‘make’ up to the first space; strpos is a function which finds the position of

one string in another; substr extracts one string from another. Remember to think

about the data type in generate. What about the Subaru?)

E3.3. Use by…: and egen to create a variable which contains the average mpg per

manufacturer.

E3.4. Use generate, replace and if-clauses to create a categorical variable which breaks

average miles per gallon into x <20 < y <30 < z

E3.5. Save the file for use in the next section.

Stata 12 basics 14 FJR March 2014

4. Analysis and graphing

For this section, reload the file hsng.dta.

4.1 Regression

Stata has a huge variety of regression commands, some of which are easy to find and some

of which are not. All of the relevant panel data regression commands will be dealt with

during this course.

The basic regression command is something like

regress rent pop hsngval

This will produce a standard statistical output. A constant will be included unless explicitly

excluded, and called “_cons”.

Regression commands can be combined with the other features of Stata encountered so far:

sort region

by region: regress rent pop hsngval

This pops up some results which don’t agree with the pooled model estimated first (why?). A

halfway house might be to introduce some dummies for the states. Noting that the region

variables are coded as numbers (and only display with useful names – look at the dataset

using describe), then:

gen int reg_1 = region==1

gen int reg_2 = region==2

gen int reg_3 = region==3

gen int reg_4 = region==4

Used in the regression (remembering to drop one dummy to avoid perfect collinearity)

regress rent pop hsngval reg_2 reg_3 reg_4

which seems to imply that the effect of separate regions is spurious as the dummies (which

now measure deviation from the effect in region 4) are all insignificant. Maybe this is due to

the small numbers in the separate-region estimate - or is it? Note that the slope coefficients

in the separated models showed, relatively, far more variation than the intercept terms…

If you are not interested in keeping categories as separate variables,but just want them for

the purposes of the regression, you can use the command xi: before the regression:

xi: regress rent pop hsngval i.region

This automatically generates dummy variables from any variable prefixed with “i.”. Compare

with the previous regress. Note that Stata automatically drops the first dummy to avoid

collinearity (hence we used 2,3,4 for comparability in the previous example, not 1,2,3); you

can set it to drop the largest category instead, which is often statistically more sensible.

Stata 12 basics 15 FJR March 2014

To use the estimated values, the estimated coefficients are stored in a system variable called

_b. This can be accessed by adding, in square brackets, the name of the variable whose

coefficient is of interest:

display _b[pop]

and this can be used in further expressions, for example to generate the estimation errors:

gen err = rent

 –_b[_cons] –(_b[pop]* pop) -(_b[hsngval]* hsngval)

 -(_b[reg_2]*reg_2)-(_b[reg_3]*reg_3)-(_b[reg_4]*reg_4)

Note the above command should all be on one line. You can also access the standard errors

for a variable by using _se[] in the same way.

All the summary statistics about the regression are stored in Stata, until you run another

analytical command. Type

help regress

At the bottom it shows you “saved results”. These saved results can be used in commands

like any other variable. For example, one of those tells you that e(r2_a) is the adjusted R-

squared. Enter

display e(r2_a)

This should be the same value as in the last regression you ran.

There are also what Stata calls post-estimation commands. These allow you to get more

information about the predicted values and to carry out hypothesis tests. For example, to

get the predicted values and errors, you could do this one of two ways usinghte predict

command:

predict err , residuals

or

predict predicted_rent , xb

generate err = rent – predicted_rent

See help predict for details.

If you are running repeated regressions and want to store the results, look at the command

estimates store. This is very helpful in programming but not covered here.

4.2 Graphs

Graphs in Stata are best done through the menus unless you are writing a program file as

they have many options. However, you can copy the menu commands and see how these

are put together. For example, enter

gen rent_est = rent-err

Then on the menus go to

Stata 12 basics 16 FJR March 2014

Graphics => twoway plots=>

and select the scatter plot with rent as the X variable and rent_est as the Y variable. You

willsee this reported as

twoway (scatter rent_est rent, sort)

in the command window.

Section 4 Exercises

For this exercise, load the file auto.dta saved at the end of the last exercise.

E4.1. Estimate the relationship between miles per gallon and the characteristics of the car.

E4.2. Add dummies to allow for car manufacturers. Does this help the regression?

E4.3. Create dummies for the country of origin. What is the effect now?

E4.4. Calculate the residuals using each of the three methods described.

E4.5. Plot the residuals using the ‘’histogram” function. How do the errors look?

Stata 12 basics 17 FJR March 2014

5. Writing programs

Although the Stata command line is adequate for many operations, for more complex tasks

(or where the task needs to be repeated, perhaps with slight amendments) a program is a

more efficient way to write Stata code.

Stata recognises two basic programs: do-files and ado-files.

5.1 Do-files

A do-file is a normal text file, which contains Stata code. Stata reads the file in and analyses

the code before deciding what to do with it. This means the code can contain loops, if-

statements to determine which commands are carried out, temporary variables, and

comments to make the whole thing more readable.

5.1.1 A sample do-file

Open the do-file editor.

This will give you a window for the standard text-editing program. Enter some Stata code in

just the same way as before, and then click on the “run the do-file” button:

Do-file editor

run the do-file

Stata 12 basics 18 FJR March 2014

Stata will run the code as if each command had been entered into the command window.

Alternatively, the file can be run by saving the file from the menu:

File => Save As…

then typing in do and the file name in the command window (assuming you saved it as

“prog1.do”:

do prog1.do

Advantages of do-files include

 they can be permanently stored, and so can be run again the next time Stata is

opened

 it is simple to make one change and then run a whole sequence of commands again

 there are more commands available in a do-file

5.1.2 Trialling code before using it

Often you’ll find yourself trying out a bit of code in the command window before writing it

into the do-file. You can scroll through previous commands to copy and select the bits you

want, but you can also copy directly from the preview window. Highlight the commands you

want, then right-click/copy, and then past into the do-file.

Note that the commands which didn’t work are highlighted in red, so you can de-select

those before copying by holding down the CTRL-key and clicking.

Selected
commands

failed
commands

Stata 12 basics 19 FJR March 2014

5.1.3 Adding comments

Comments can either consist of a single asterisk on a line, in which case everything following

on the line is treated as a comment

* this is a comment

or they can consist of matched pairs of /* and */. This allows large blocks of text to be

commented out easily:

/*

 Program: Simple_sum.do

 Author: FJR 03.8.13

 Loads file and creates a simple summary of data

*/

Comments make code much more readable:

* set up environment

clear

set more off

* move to correct directory and load data

cd "c:\stata"

use "hsng.dta"

* print quick summary

summ

5.1.4 Loops and macros

Stata has several confusingly similar looping commands. The simplest is probably foreach

which carries out a sequence of operations for every variable in a list:

foreach var in 1 2 3 4 {

 sum if region == `var'

}

This is equivalent to

sum if region == 1

sum if region == 2

sum if region == 3

sum if region == 4

Other similar loop commands exist. See the help system for details (work through the

examples, not the explanation).

Stata 12 basics 20 FJR March 2014

The temporary variable “var” takes on the value of each of the variables in the list in order.

Variables such as this, called macros, can be used generally in programs. They work by a

direct text substitution. For example, these are equivalent:

local banana = 1

display `banana'

and

display 1

The keyword local tells Stata that the following name is to be substituted with the

appropriate value whenever Stata comes across the name.

Macros declared using local have the same value throughout the program, unless they are

changed by another local command. In contrast, macros used to control loops, sometimes

called loop variables or loop indexes, have no value outside the loop. They can be redefined,

but not relied upon unless re-set by a local command.

Macros require distinct left and right quote marks. On UK keyboards the quote marks are

the top-left button (left quote) and below the @ symbol (right quote).

5.1.5 If-statements

If-statements can be used to alter the flow of a program. In the above example,

foreach var in 1 2 3 4 {

 if `var’ == 1 {

 display “North-east”

 }

 else {

 display “Somewhere else”

 }

 sum if region == `var'

}

alters the action depending upon the current value of the variable “var”. If-statements are

commonly used in loop with loop variables (as above) to allow for variations in the data.

Other places are where the action is not known in advance but depend upon the course of

events. For example:

regress rent hsngval pop

if _b[pop]/_se[pop] > 1.96 {

 display "pop is significant at the 90% level"

}

else {

 display "pop is not significant"

Stata 12 basics 21 FJR March 2014

}

5.1.6 A warning about the do-file editor

For both do-files and ado-files, these can be edited by any text-editor. Use of the Stata do-

file editor is not necessary. However, if you do use the Stata editor, note that pressing the

“run” button causes Stata to save a temporary copy on disk and run that temporary file – it

does not automatically save the “real” file.

This can lead to confusion when using the do command and clicking on old commands in the

review window. A common mistake is to re-run the temporary file while only the real one

has been saved, or vice-versa.

5.2 Ado-files (for advanced users)

Ado-files are similar to do-files except that they contain a self-contain piece of code called by

Stata (confusingly) a program. This program should have the same name as the ado-file.

When Stata comes across a command it does not recognise, for example

show_stuff(pop)

it looks for a file called show_stuff.ado containing a program called “show_stuff”. If it finds

the program, it will load it into memory and the code will be permanently available.

This is how a lot of Stata is implemented, and it means that although it has a huge array of

commands the core of Stata is kept relatively small. Only a few key commands are available

whenever Stata is running; the rest are loaded up as needed.

It also means that a lot of the core functions in Stata can be edited, as they are just text files.

Do not edit any ado-files unless you know you or one of your colleagues has created it; you

may be editing standard Stata commands.

Ado-files can be loaded into the Stata environment and run automatically. Each user has a

“personal” ado file (like a start-up file) which can be used to set up your basic environment;

for example, setting memory on opening the 10Mb instead of Stata’s 1Mb default. The exact

location of this file depends upon your Stata setup. It may not be accessible in some network

implementations.

Section 5 Exercises

E5.1 Copy some of your commands from the review window into a do-file, remembering to

leave out the failed commands.

E5.2 Clear the do-file, then repeat the exercise of section 4, but this time type the code into

a do-file.

